Store besparelser
Hurtig levering
Gemte
Log ind
0
Kurv
Kurv
Spectral Geometry of Graphs
Engelsk Hardback
Spectral Geometry of Graphs
Engelsk Hardback

478 kr
Tilføj til kurv
Sikker betaling
23 - 25 hverdage

Om denne bog
This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems. The trace formula is relating the spectrum to the set of periodic orbits and is comparable to the celebrated Selberg and Chazarain-Duistermaat-Guillemin-Melrose trace formulas. Unexpectedly this formula allows one to construct non-trivial crystalline measures and Fourier quasicrystals solving one of the long-standing problems in Fourier analysis. The remarkable story of this mathematical odyssey is presented in the first part of the book. To solve the inverse problem for Schrödinger operators on metric graphs the magnetic boundary control method is introduced. Spectral data depending on the magnetic flux allow one to solve the inverse problem in full generality, this means to reconstruct not only the potential on a given graph, but also the underlying graph itself and the vertex conditions. The book provides an excellent example of recent studies where the interplay between different fields like operator theory, algebraic geometry and number theory, leads to unexpected and sound mathematical results. The book is thought as a graduate course book where every chapter is suitable for a separate lecture and includes problems for home studies. Numerous illuminating examples make it easier to understand new concepts and develop the necessary intuition for further studies.
Product detaljer
Sprog:
Engelsk
Sider:
639
ISBN-13:
9783662678701
Indbinding:
Hardback
Udgave:
ISBN-10:
3662678705
Udg. Dato:
9 nov 2023
Længde:
0mm
Bredde:
155mm
Højde:
235mm
Forlag:
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Oplagsdato:
9 nov 2023
Forfatter(e):
Kategori sammenhænge