Store besparelser
Hurtig levering
Gemte
Log ind
0
Kurv
Kurv
Machine Learning for Time Series Forecasting with Python
Engelsk Paperback
Machine Learning for Time Series Forecasting with Python
Engelsk Paperback

619 kr
Tilføj til kurv
Sikker betaling
23 - 25 hverdage

Om denne bog
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource  Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling.   Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting.  Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to:  Understand time series forecasting concepts, such as stationarity, horizon,  trend, and seasonality  Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting  Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts.  Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.     
Product detaljer
Sprog:
Engelsk
Sider:
224
ISBN-13:
9781119682363
Indbinding:
Paperback
Udgave:
ISBN-10:
1119682363
Kategori:
Udg. Dato:
25 feb 2021
Længde:
18mm
Bredde:
234mm
Højde:
187mm
Forlag:
John Wiley & Sons Inc
Oplagsdato:
25 feb 2021
Forfatter(e):
Kategori sammenhænge