Store besparelser
Hurtig levering
Gemte
Log ind
0
Kurv
Kurv

Deep Neural Networks and Data for Automated Driving

- Robustness, Uncertainty Quantification, and Insights Towards Safety
Engelsk Hardback

Deep Neural Networks and Data for Automated Driving

- Robustness, Uncertainty Quantification, and Insights Towards Safety
Engelsk Hardback
Tjek vores konkurrenters priser
Chapter 1. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety.- Chapter 2. Does Redundancy in AI Perception Systems Help to Test for Super-Human Automated Driving Performance?.- Chapter 3. Analysis and Comparison of Datasets by Leveraging Data Distributions in Latent Spaces.- Chapter 4. Optimized Data Synthesis for DNN Training and Validation by Sensor Artifact Simulation.- Chapter 5. Improved DNN Robustness by Multi-Task Training With an Auxiliary Self-Supervised Task.- Chapter 6. Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation.- Chapter 7. Invertible Neural Networks for Understanding Semantics of Invariances of CNN Representations.- Chapter 8. Confidence Calibration for Object Detection and Segmentation.- Chapter 9. Uncertainty Quantification for Object Detection: Output- and Gradient-based Approaches.- Chapter 10. Detecting and Learning the Unknown in Semantic Segmentation.- Chapter 11. Evaluating Mixture-of-Expert Architectures for Network Aggregation.- Chapter 12. Safety Assurance of Machine Learning for Perception Functions.- Chapter 13. A Variational Deep Synthesis Approach for Perception Validation.- Chapter 14. The Good and the Bad: Using Neuron Coverage as a DNN Validation Technique.- Chapter 15. Joint Optimization for DNN Model Compression and Corruption Robustness.
Tjek vores konkurrenters priser
Normalpris
kr 478
Fragt: 39 kr
6 - 8 hverdage
20 kr
Pakkegebyr
God 4 anmeldelser på
Tjek vores konkurrenters priser
Chapter 1. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety.- Chapter 2. Does Redundancy in AI Perception Systems Help to Test for Super-Human Automated Driving Performance?.- Chapter 3. Analysis and Comparison of Datasets by Leveraging Data Distributions in Latent Spaces.- Chapter 4. Optimized Data Synthesis for DNN Training and Validation by Sensor Artifact Simulation.- Chapter 5. Improved DNN Robustness by Multi-Task Training With an Auxiliary Self-Supervised Task.- Chapter 6. Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation.- Chapter 7. Invertible Neural Networks for Understanding Semantics of Invariances of CNN Representations.- Chapter 8. Confidence Calibration for Object Detection and Segmentation.- Chapter 9. Uncertainty Quantification for Object Detection: Output- and Gradient-based Approaches.- Chapter 10. Detecting and Learning the Unknown in Semantic Segmentation.- Chapter 11. Evaluating Mixture-of-Expert Architectures for Network Aggregation.- Chapter 12. Safety Assurance of Machine Learning for Perception Functions.- Chapter 13. A Variational Deep Synthesis Approach for Perception Validation.- Chapter 14. The Good and the Bad: Using Neuron Coverage as a DNN Validation Technique.- Chapter 15. Joint Optimization for DNN Model Compression and Corruption Robustness.
Produktdetaljer
Sprog: Engelsk
Sider: 427
ISBN-13: 9783031012327
Indbinding: Hardback
Udgave:
ISBN-10: 3031012321
Udg. Dato: 18 jun 2022
Længde: 0mm
Bredde: 155mm
Højde: 235mm
Forlag: Springer International Publishing AG
Oplagsdato: 18 jun 2022
Forfatter(e):
Forfatter(e)


Kategori Matematisk modellering


ISBN-13 9783031012327


Sprog Engelsk


Indbinding Hardback


Sider 427


Udgave


Længde 0mm


Bredde 155mm


Højde 235mm


Udg. Dato 18 jun 2022


Oplagsdato 18 jun 2022


Forlag Springer International Publishing AG